The Double-slit Experiment (by lgsims96 in HubPages)

I discovered this blog by lgsims96 last year and thought it was the clearest explanation yet of this quantum paradox. It has since disappeared from his (or her) blog so I am offering it here to fill a gap in the general thinking about a key experiment. I generally agree with the conclusion illustrated in figure 6 in the article but would replace the “electron” shown on the diagram with an electron-like concentration of energy, and the ne”negative field” surrounding it with what I would describe as a distortion in the background electromagnetic fiel that I am convinced fills what we call “space” both throughout and outside of our finite universe. ___________________________________________

Double Slit Experiment

If you project light thought a narrow slit, a single band of light can be seen on a screen behind the slit.  This is illustrated in fig. 1. Fig 1

Fig. 1

If you project light through two narrow slits, one would expect to see 2 bands of light on the screen. However multiple bands of light appear. See fig.2.Fig 2

Fig. 2

This is explained if light were waves.  In fig. 2a on the left we see waves where two peaks overlap they create a higher peak. Where two troughs overlap they create a deeper trough. Both of these produce a brighter light. However on the right when a peak and a trough overlap they cancel each other resulting in no light.

Fig 2a

Fig. 2a

In fig 3 we are looking down on fig. 2. In the diagram the peaks of the waves are represented by solid black lines.  The troughs of the waves are represented as dotted lines.  We can see that the peaks and troughs of the waves are moving from the bottom of the illustration to the barrier with the two slits.  The barrier is represented as a heavy dark blue line.  The slits are two openings in the heavy blue line. As the waves pass through the slits they become circular waves emanating from the two slits. These waves overlap each other.Fig 3

Fig. 3

In fig 3 the white arrows trace out the paths where the peaks overlap and the troughs overlap. These paths lead to where the light bands appear on the screen. The black lines trace the paths where peaks and troughs overlap and the light is canceled.Fig 7

Fig. 4

When a beam of electrons bounce off nickel crystals they produce a similar diffraction pattern as the light waves through the double slit.  It is OK to think of the electrons as passing through a double slit as shown in fig.4. When these electrons hit the screen, now a phosphorescent screen they produce a similar pattern of bands.  Thus the electrons exhibit wave features.  One particle cannot pass through both slits.  One particle passing through one slit should not have an effect on another particle passing through the other slit. Then how can the electrons produce this interference pattern of separate bands? Fig 5

Fig. 5

Richard Feynman was one of the world’s greatest theoretical physicists. Feynman suggested that particles must be viewed as traveling from one location to another along every possible path. A few of the infinity of trajectories for a single electron traveling from the source to the phosphorescent screen are shown in fig. 5.  Notice that this one electron goes through both slits. I am sorry, but this sounds like an Alice in Wonderland explanation.

Fig 6

fig, 6

It would seem more likely that this effect is caused by the negative electric field that surrounds each electron.  As the electron approaches the slits, the electric field will pass through both slits shown in fig. 6.  After passing through the electric field is divided into two parts.  These two fields could create an interference pattern.  This pattern creates paths that resist the movement of the electrons.  These are shown here as black lines.  Other areas of the pattern offer very litter or no resistance to the flow of the electrons. They are shown as white arrows.  Thus the electrons follow the paths of least resistance.  It would seem more likely that this could possibly cause the bands of electrons on the screen. Consider what would happen if only one electron passes through one of the slits. Its electric field will have already started passing through both slits.  As the electric field continues to pass through the slits, the field is divided into two fields.  These two fields create an interference pattern that causes paths of least resistance to the movement of the electron.  The electron will follow one of these paths to the screen where it will appear as a single spot on the screen.  This spot will be in the area that the bright bands would have occurred if many electrons had passed through the slits. Notice how as the negative electric field surrounding the electron passes through the double slits, behaves the same as the electromagnetic waves of light.  This could indicate that this field is the result of electromagnetic waves emanating from the electron. The field is negative because the negative troughs of the wave are greater than the wave’s positive peaks. (text and illustrations by lgsims96, on Hub Pages) __________________________________________

For my explanation, this diagram (Figure 6) needs only, as I said earlier, to replace the author’s “electron” by an electron-sized concentration of energy, and his “electric field” with a distortion of the background electromagnetic field by that electron-sized energy concentration. It certainly seems to explain this made up paradox in a simpler way. Charles Scurlock 7/19/13

About Charles Scurlock

Charles is a recently retired architect/planner and generalist problem-solver with a lifelong interest in science, physics, and cosmology, and the workings of the human mind. He has started this blog in the interest of sharing his ideas with others of like-(or not so like) minds.
This entry was posted in 6 General. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.